
[Image for reference only. Not to scale.]

Description MgO doped PPLN OPO crystal for 1064nm pump
Thickness(z) $0.5 \mathrm{~mm} \pm 0.05 \mathrm{~mm}$
Width(y) $10 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$
Length(x) $40 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, 20 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, 10 \mathrm{~mm} \pm 0.2 \mathrm{~mm}, 5 \mathrm{~mm} \pm 0.1 \mathrm{~mm}, 3 \mathrm{~mm} \pm 0.1 \mathrm{~mm}, 1 \mathrm{~mm} \pm 0.1 \mathrm{~mm}$ Periods(Λ) 27.91, 28.28, 28.67, 29.08, 29.52, 29.98, 30.49, 31.02, 31.59 $\mu \mathrm{m}$

NOTES:
1 The OPO device material is Magnesium doped Lithium Niobate with nine periodically poled gratings. Each grating is 0.5 mm wide with individual periods as listed above. A saw-cut reference mark is provided on the $+z$ face of the crystal to determine the largest grating period (see above diagram). Each poled grating is separated by 0.2 mm wide regions of unpoled material.

The average mark-to-space ratio of each grating is better than 70:30.
3 Each device is etched to make the poled gratings visible. Due to the wet-etch nature of this process the top and bottom surface finish of each device may appear cloudy or uneven.

4 Perpendicularity of input/output facets F1 and F2 to gratings is within $\pm 0.15^{\circ}$. Parallelism between end facets F1 and F2 is within ± 5 minutes.

5 Optical finish of facets F1 and F2 is within $20 / 10$ scratch dig with $\lambda / 8 @ 1064 \mathrm{~nm}$. No more than two $100 \mu \mathrm{~m}$ size chips per end facet.

6 AR coated to R<1.5\% @ 1064nm (Pump) \& to R<1\% @1400-1800nm (Signal) \& to R ~6\%-3\% @ 26004800 nm (Idler), on both input/output facets.

Device Specification
 MOPO1-0.5-xx

OPO Tuning Curve 1064nm Pump

Please note these are calculated tuning curves only and actual values may vary.

