
[Image for reference only. Not to scale.]

Description MgO doped PPLN SFG crystal for 1051 nm and 1551 nm pump, 626 nm SFG
Thickness(z) $0.5 \mathrm{~mm} \pm 0.05 \mathrm{~mm}$
Width(y) $10 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$
Length (x) $20 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, 3 \mathrm{~mm} \pm 0.1 \mathrm{~mm}, 1 \mathrm{~mm} \pm 0.1 \mathrm{~mm}$
Periods(\wedge) 11.12, 11.17, $11.22 \mu \mathrm{~m}$

NOTES:

1 The SFG device material is congruently grown MgO doped Lithium Niobate with three periodically poled gratings. Each grating is 0.5 mm wide with individual periods as listed above. A saw-cut reference mark is provided on the $+z$ face of the crystal to determine the largest grating period (see above diagram). Each poled grating is separated by 0.2 mm wide regions of unpoled material.

2 The average mark-to-space ratio of each grating is better than 70:30.
3 Each device is etched to make the poled gratings visible. Due to the wet-etch nature of this process the top and bottom surface finish of each device may appear cloudy or uneven.

4 Perpendicularity of input/output facets F1 and F2 to gratings is within $\pm 0.15^{\circ}$. Parallelism between end facets F1 and F2 is within ± 5 minutes.

5 Optical finish of facets F1 and F2 is within 20/10 scratch dig with $\lambda / 4 @ 633 n m$. No more than two $100 \mu \mathrm{~m}$ size chips per end facet.

6 Triple band AR coating to less than $R<1 \%$ at $626 \mathrm{~nm}, 1051 \mathrm{~nm}, 1551 \mathrm{~nm}$ on both input/output facets.

Device Specification MSFG626-0.5-xx

Please note these are calculated tuning curves only and actual values may vary.
For more information, please contact us at:

