Beam Shaper (DOE)

  • Update:May 20, 2020
  • View:

A Top-Hat beam shaper converts a Gaussian input laser beam into a uniform intensity beam of any shape and size requested by the customer. The beam shaping element is a diffractive optical element (DOE) used to transform a near-gaussian incident laser

We are promoting laser lamps, galvos, marking heads, green laser pointers etc till the stock is sold out. Pleasee click here.

Beam Shaper

A diffractive beam shaper allows you to modify the intensity and phase profiles of spatially coherent lasers. Through in-phase manipulation of the input beam, you can achieve virtually limitless and, most importantly, speckle-free intensity profiles in the output beam. This requires reliable and accurate knowledge of the input beam and phase profile.

You can optimize the performance and overall efficiency of your system, which could be in the application of laser material processing, in the field of lithography and holographic lighting as well as for biomedical devices and optical sensors.

With our high-performance beam shapers, you can create uniform top-hat, circular rectangular, or linear intensity profiles as well as all manner of distributions and geometries – all according to your own specific requirements and applications. We design our beam shapers to be perfectly compatible with single-mode (TEM00) input beams. We also produce refractive or diffractive diffusers and homogenizers for use with multi-mode lasers to integrate the multi-mode beam. These cover a wavelength range from DUV to LWIR.

Diffractive Line Generators

Single-mode lasers such as solid-state lasers, fiber lasers, diode lasers, gas lasers and frequency-doubled or -tripled lasers feature a Gaussian beam profile. These Gaussian profiles can´t be readily used for optimal for uniform lighting applications. 

Diffractive line generators from Sintec use a single surface element without additional optics to convert a Gaussian laser beam into a uniform, one-dimensional top-hat profile. Uniform and speckle-free lines are ideal for material processing applications, such as annealing or recrystallization of semiconductors and thin layers. This type of illumination can be designed to create lines at normal incidence or even on highly tilted planes.
 

Diffractive Diffuser

You use diffractive diffusers from Sintec to absorb a monochromatic laser beam and scatter the light into any imaginable pattern. Like the diffractive beam splitter, the diffuser converts an input beam into a multitude of output beams, the angle and intensity of which can be controlled.

However, in contrast with the beam splitter, these beams overlap and interfere, generating a new, homogenized distribution.
Diffractive diffusers are therefore ideal for laser applications, in which a specific laser beam shape is required, similarly to refractive homogenizers. They also allow you to realize uniform performance for a specific range at a defined distance from the light source. The optical elements achieve a uniformity of 3 to 5%, whereby the shape of the light distribution can be round, rectangular or freely selectable.

Our diffractive diffusers feature a strictly controlled beam angle, which guarantees you particularly high levels of efficiency. The diffusers are not alignment sensitive and have no impact on the polarization of the input beam. This makes the diffractive diffusers ideal for applications requiring rapid sensing of large areas, in the fields of remote sensing or LIDAR/LADAR, for example. The diffusers cover the wavelength range from DUV to infrared.

Gaussian Generator

The diffractive Gaussian generators from Sintec represent a special type of diffractive diffuser and are ideally suited for high-power lasers such as excimer, nitrogen or diode lasers. They convert non-Gaussian laser beams into accurately defined, reproducible Gaussian far-field profiles.

Such intensity profiles are ideal for overlapping laser beam processing – for example, during material processing and medical laser treatment or for printing technology and measuring systems. We can provide you with DOEs for wavelengths ranging from UV to NIR.

Beam Shaper (Top Hat)

1. STR Series Beam Shapers

A Top-Hat beam shaper converts a Gaussian input laser beam into a uniform intensity beam of any shape and size requested by the customer.

The beam shaping element is a diffractive optical element (DOE) used to transform a near-gaussian incident laser beam into a uniform-intensity spot of either round, rectangular, square, line or other shape with sharp edges in a specific work plane.

 

A uniform spot enables equal treatment to a surface, excluding over/under-exposure of specific areas. In addition, the spot is characterized by a sharp transition region that creates a clear border between the treated and untreated area.

The beam shaping can be a:

Focal Beam Shaping: Hybrid element (lens) or module which give a Top-Hat intensity distribution at a specific working distance (BFL of the lens or distance from exit location of the module to Top-Hat plane).

Angular Beam Shaping: Optical element (window) which gives a Top-Hat intensity distribution at infinity or focal length of aberration free customer's lens.

M-Shaper: Optical element (window) which gives a uniform exposure over scanned lines.

Focal Beam Shaper standard elements

PN

Wavelength [nm]

Beam Dia [mm]

WD [mm]

Spot Size

Element Size [mm]

Image Shape

TH-042-U-Y-A

355

2.5

50

50 um

25.4

Round

TH-245-U-Y-A

355

12

50

45x10um

25.4

Rectangular

ST-202-U-Y-A

355

14

50

50x6 um

25.4

Rectangular

ST-203-I-Y-A

1064

6

52

50x50 um

25.4

Square

ST-204-Q-Y-A

532

6

52

30 x 30 um

25.4

Square

TH-241-W-Y-A

266

8

200

1mm

25.4

Line

TH-235-U-Y-A

355

12

700

10mm

27.94

Line

ST-209-Q-Y-A

532

2

104.76

150x200um

12.7

Rectangular

ST-211-A-Y-A

10600

11

38

125x200um

27.94

Rectangular

ST-215-U-Y-A

355

14

47.8

6x34um

25.4

Rectangular

ST-216-U-Y-A

355

14

47.8

6x38um

25.4

Rectangular

ST-217-U-Y-A

355

14

47.8

6x42um

25.4

Rectangular

TH-234-A-Y-A

10600

14

95

250um

27.94

Round

TH-233-A-Y-A

10600

12

63.5

0.25x2.5mm

27.94

Rectangular

TH-223-A-Y-A

10600

2.4

565

27.8x27.8mm

15

Square

TH-222-Q-Y-A

532

2.9

40

200um

12.7

Line

TH-219-A-Y-A

10600

12

63.5

0.25x1.5mm

27.94

Rectangular

TH-217-U-Y-A

355

2

100

100x100um

12.7

Square

TH-009-A-Y-A

10600

10

63.5

280x280 um

27.94

Square

TH-011-A-Y-A

10600

25

250

3 mm

38.1

Round

TH-216-Q-Y-A

532

12

720

10x10mm

25.4

Square

TH-014-I-Y-A

1064

7

42.52

190 um

20

Round

TH-017-I-Y-A

1064

39

20000

635x5.3 mm

50

Rectangular

TH-018-I-Y-A

1064

13

20000

635x635 mm

38.1

Square

TH-019-I-Y-A

1064

3.5

100

210x210 um

25.4

Square

TH-209-U-Y-A

355

9x6

200

100 um

25.4

Round

TH-208-A-Y-A

10600

13

150

5 mm

27.94

Line

TH-207-U-Y-A

355

3.5

99.35

200x200 um

25.4

Square

TH-034-Q-Y-A

532

2.5

99.5

100x100 um

25.4

Square

TH-035-Q-Y-A

532

2.5

99.5

90 um

25.4

Round

TH-036-Q-Y-A

532

3.5

100

200x200 um

25.4

Square

ST-201-A-Y-A

10600

16.5

187.5

360um

38.1

Round

TH-043-U-Y-A

355

8

49.8

15 um

20

Round

TH-205-A-Y-A

10600

4

100

1.5mm

25.4

Round

TH-045-U-Y-A

355

1.65

94

170x170 um

12.7

Square

TH-046-U-Y-A

355

2.5

95

61x61um

12.7

Square

TH-051-W-Y-A

266

5

42

15 um

25.4

Round

TH-101-I-Y-A

1064

3

100

150 um

25.4

Round

TH-102-I-Y-A

1064

6

100

150 um

25.4

Round

TH-103-I-Y-A

1064

9

1000

10x10 mm

25.4

Square

TH-202-A-Y-A

10600

14.5

79.5

370um

20

Round

TH-203-D-Y-A

2940

4

80

200 um

11

Round

TH-204-Q-Y-A

532

3.5

105

200x200um

25.4

Square

ST-200-C-Y-A

9250

12

63.5

260x260um

27.94

Square

TH-032-Q-Y-A

532

10.9

200

2mm @FWHM

25.4

Round

TH-031-Q-Y-A

532

5

52.4

100 um

25.4

Round

TH-005-C-Y-A

9250

12

62.9

350 um

27.94

Round

TH-226-A-Y-A

10600

4

100

3x3mm

20

Square

TH-231-I-Y-A

1064

5

100

0.2x0.6mm

12.7

Rectangular

TH-004-A-Y-A

10600

12

63.4

390 um

27.94

Round

TH-003-A-Y-A

10600

3.7

41

650um

12.7

Line

TH-244-U-Y-A

355

12

50

35x13um

25.4

Rectangular

TH-033-X-Y-A

800

6

200

3 mm

25.4

Round

TH-012-H-Y-A

1319

7

43.2

170 um

20

Round

TH-008-C-Y-A

9250

10

62.9

260x260 um

27.94

Square

TH-232-X-Y-A

1070

12

150

300x300um

38.1

Square

TH-007-C-Y-A

9250

25

121

14.2X1.7 mm

38.1

Rectangular

TH-006-A-Y-A

10600

25

125

15X1 mm

38.1

Rectangular

ST-208-X-Y-A

1070

14

75

500x500um

30

Square

ST-205-I-Y-A

1064

7

100

210x210um

25.4

Square

TH-044-1-Y-A

337

8

49.4

20 um

20

Round

TH-224-X-Y-A

1070

14

75.76

1x1mm

38.1

Square

Angular Beam Shaper

PN

λ [nm]

Beam Dia [mm]

θf [mRad]

Image size*** [um] for EFL=100mm

Element Size [mm]

Image Shape

Remarks

TH-238-I-Y-A

1064

3

6

600

11

Round

 

ST-206-I-Y-A

1064

10

2.7

270

25.4

Line

 

ST-219-I-Y-A

1064

4

0.52

52

11

Round

Binary TH

ST-225-I-Y-A

1064

4.5

0.47

47

25.4

Square

Binary TH

ST-234-I-Y-A

1064

7

0.3

30

25.4

Square

Binary TH

ST-237-I-Y-A

1064

9

0.23

23

25.4

Round

Binary TH

ST-241-I-Y-A

1064

10

0.2

20

25.4

Round

Binary TH

PT-001-I-N-A

1064

6

0.56

56

30

Square

 

TH-258-I-Y-A

1064

10

0.48

48

25.4

Square

 

ST-212-I-Y-A

1064

7

1

100

20

Square

 

ST-277-I-Y-A

1064

7

0.3

30

25.4

Line

Binary TH

TH-227-I-Y-A

1064

3

13.3

1330

11

Round

 

ST-283-I-Y-A

1064

12

0.36x1.80

36.0x180.0

25.4

Rectangular

TH-215-I-Y-A

1064

6

1

100

25.4

Round

 

ST-286-I-Y-A

1064

12

0.35x2.70

35.0x270.0

25.4

Rectangular

TH-015-I-Y-A

1064

5.1

14.5

1450

25.4

Line

 

TH-013-I-Y-A

1064

7

17.5

1750

25.4

Square

 

ST-303-I-Y-A

1064

7.5

0.28

28

25.4

Round

Binary TH

ST-221-I-Y-A

1064

4.7

0.44

44

25.4

Round

Binary TH

ST-238-I-Y-A

1064

10

0.2

20

25.4

Square

Binary TH

ST-239-I-Y-A

1064

6

0.35

35

25.4

Round

Binary TH

ST-240-I-Y-A

1064

8

0.26

26

25.4

Round

Binary TH

ST-222-I-Y-A

1064

5

0.41

41

25.4

Round

Binary TH

PT-002-I-Y-A

1064

7.5

45.18x2.64

4518.8x264.0

40x40

Rectangular

ST-259-I-Y-A

1064

2

1.04

104

11

Round

Binary TH

ST-260-I-Y-A

1064

3

0.69

69

11

Round

Binary TH

PT-001-I-Y-A

1064

6

0.56

56

30

Square

 

ST-289-I-Y-A

1064

3.5

0.6

60

11

Round

Binary TH

TH-249-I-Y-A

1064

3.2

0.74

74

12.5

Line

Binary TH

TH-246-I-Y-A

1064

6

4.2

420

25.4

Round

 

TH-239-I-Y-A

1064

4.7

0.51

51

12.5

Line

Binary TH

ST-227-I-Y-A

1064

4

2

200

11

Frame

Binary TH

ST-267-I-Y-A

1064

2

1.04

104

11

Line

Binary TH

ST-268-I-Y-A

1064

3

0.69

69

11

Line

Binary TH

ST-269-I-Y-A

1064

4

0.52

52

11

Line

Binary TH

ST-270-I-Y-A

1064

5

0.43

43

11

Line

Binary TH

ST-271-I-Y-A

1064

2

1.3

130

11

Round

Binary TH

ST-272-I-Y-A

1064

3

0.87

87

11

Round

Binary TH

ST-273-I-Y-A

1064

5

0.52

52

25.4

Round

Binary TH

ST-275-I-Y-A

1064

8

0.26

26

25.4

Line

Binary TH

ST-276-I-Y-A

1064

10

0.21

21

25.4

Line

Binary TH

ST-228-I-Y-A

1064

4

24

2400.1

11

Frame

Binary TH

ST-278-I-Y-A

1064

9

0.23

23

25.4

Line

Binary TH

ST-229-I-Y-A

1064

4

12

1200

11

Square

Binary TH

TH-221-I-Y-A

1064

2.2

3.2

320

11

Square

Binary TH

ST-281-I-Y-A

1064

6

0.34

34

25.4

Line

Binary TH

ST-282-I-Y-A

1064

6

0.34

34

25.4

Square

Binary TH

ST-230-I-Y-A

1064

7

0.29

29

20

Round

Binary TH

TH-220-I-Y-A

1064

1.125

6.2

620

11

Square

Binary TH

ST-231-I-Y-A

1064

3

8.7

870

11

Line

Binary TH

ST-232-I-Y-A

1064

3

17.67

1767

11

Line

Binary TH

ST-220-I-Y-A

1064

4

0.53

53

11

Square

Binary TH

ST-235-I-Y-A

1064

8

0.26

26

25.4

Square

Binary TH

ST-315-I-Y-A

1064

1.5

1.39

139

11

Square

Binary TH

ST-290-I-Y-A

1064

3.5

0.6

60

11

Square

Binary TH

ST-291-I-Y-A

1064

2

1.02

102

11

Square

Binary TH

ST-292-I-Y-A

1064

2.5

0.81

81

11

Square

Binary TH

ST-293-I-Y-A

1064

3

0.68

68

11

Square

Binary TH

ST-294-I-Y-A

1064

2.5

0.83

83

11

Line

Binary TH

ST-295-I-Y-A

1064

3.5

0.59

59

11

Line

Binary TH

ST-296-I-Y-A

1064

4.5

0.46

46

11

Line

Binary TH

ST-297-I-Y-A

1064

2.5

0.84

84

11

Round

Binary TH

ST-298-I-Y-A

1064

4.5

0.47

47

11

Round

Binary TH

ST-299-I-Y-A

1064

5.7

0.4

40

11

Round

Binary TH

ST-300-I-Y-A

1064

5.7

0.49

49

11

Round

Binary TH

ST-301-I-Y-A

1064

5.7

0.37

37

12.5

Round

Binary TH

ST-302-I-Y-A

1064

5.7

0.48

48

12.5

Round

Binary TH

ST-236-I-Y-A

1064

9

0.23

23

25.4

Square

Binary TH

ST-307-I-Y-A

1064

1

2.08

208

11

Round

Binary TH

ST-308-I-Y-A

1064

1

2.08

208

11

Square

Binary TH

ST-312-I-Y-A

1064

1

2.08

208

11

Line

Binary TH

ST-313-I-Y-A

1064

1.5

1.39

139

11

Line

Binary TH

ST-314-I-Y-A

1064

1.5

1.39

139

11

Round

Binary TH

ST-263-I-Y-A

1064

12

0.36x2.39

36.0x239.0

25.4

Rectangular

ST-207-I-Y-A

1064

10

0.6

60

25.4

Round

 

ST-288-I-Y-A

1064

12

0.36x3.30

36.0x330.0

25.4

Rectangular

ST-287-I-Y-A

1064

12

0.35x2.99

35.5x299.0

25.4

Rectangular

ST-285-I-Y-A

1064

12

0.36x2.40

36.0x240.0

25.4

Rectangular

ST-284-I-Y-A

1064

12

0.36x2.10

36.0x210.0

25.4

Rectangular

ST-280-I-Y-A

1064

12

0.36x3.30

36.5x330.0

25.4

Rectangular

TH-225-I-Y-A

1064

1.2

23.7

2370.1

11

Dollar

 

ST-279-I-Y-A

1064

12

0.36x3.00

36.0x300.0

25.4

Rectangular

TH-228-I-Y-A

1064

3

10

1000

11

Round

 

TH-236-I-Y-A

1064

6

7.2

720

25.4

Grid 10x10 cells

TH-237-I-Y-A

1064

6

7.2

720

25.4

11 lines

 

ST-266-I-Y-A

1064

12

0.37x2.40

36.9x239.5

25.4

Rectangular

rounded corners

ST-265-I-Y-A

1064

12

0.37x2.09

37.2x209.1

25.4

Rectangular

rounded corners

ST-264-I-Y-A

1064

12

0.36x2.69

36.5x269.0

25.4

Rectangular

TH-248-I-Y-A

1064

5

5.60x0.94

560.0x94.0

25.4

Rectangular

TH-002-I-Y-A

1064

12

2.4

240

27.94

Square

 

TH-252-I-Y-A

1064

6

20

2000.1

25.4

Round

 

TH-253-I-Y-A

1064

12

0.65x2.97

65.0x297.0

25.4

Rectangular

TH-254-I-Y-A

1064

12

0.81x2.36

81.0x236.0

25.4

Rectangular

TH-255-I-Y-A

1064

12

1.10x1.77

110.0x177.0

25.4

Rectangular

TH-256-I-Y-A

1064

12

0.40x4.79

40.0x479.0

25.4

Rectangular

TH-257-I-Y-A

1064

12

0.36x5.39

36.0x539.0

25.4

Rectangular

ST-262-I-Y-A

1064

12

0.36x2.10

36.0x210.0

25.4

Rectangular

TH-259-I-Y-A

1064

6

3.19

319

25.4

Square

 

TH-260-I-Y-A

1064

6

1.71

171

25.4

Square

 

TH-105-I-Y-A

1064

7.5

0.54

54

25.4

Round

 

ST-261-I-Y-A

1064

12

0.36x1.78

35.8x178.0

25.4

Rectangular

ST-258-I-Y-A

1064

10

3.9

390

25.4

Line

 

ST-223-I-Y-A

1064

6

3

300

25.4

Line

 

PT-003-I-Y-A

1064

3.2

22.77

2277.1

12.7x12.7

Line

 

PT-005-I-Y-A

1064

5

3.29

329

25.4

Round

 

PT-006-I-Y-A

1064

2

40.30x57.10

4030.5x5711.6

12.7

Elliptical

 

Small Angle Top Hat standard

Small Beam Shaper for scanning application (~1.5X Diffraction Limit)

Laser beams with Top-hat energy distribution are being used for different applications in the laser material processing industry. Most systems in this industry include scanners and F-θ lenses in order to direct and focus the beam on the substrate. HoloOr is proud to introduce a new design for ~1.5x(Diffraction limit) beam shapers DOEs (Diffractive Optical Element) which is considerably cheaper than regular Top-hats. Those DOEs are specially designed to operate with scanners/F-θ lenses under high power lasers. Placing the beam shaper DOE before the scanner will create a top-hat energy distribution at the F-θ lens working plane. The use of this beam shaper does not affect the focal length of the system.

2. STO Series Flat-top Beam Shaping Elements for a Gaussian beam with a specific beam size and good beam quality

A laser beam with a top-hat uniform intensity distribution is desired in many applications. A top-hat beam is also called a flat-top beam or a super-Gaussian beam. Basically we have 4 different methods to homogenize a laser beam, i.e.

2.1 Flat-top beam shaping for a Gaussian beam with a specific beam size and good beam quality

The products were designed and fabricated based on our first method of homogenizing an incident laser beam. Product nomination for diffractive top-hat beam-shaping elements is as follows:

STO-TH-22-33-44-55-66-77

STO means STO series DOEs for flat-top beam shaping elements; TH means top hat; 22 means beam shape (RD means round, REC means rectangle); 33 means element size in mm; 44 means input beam diameter in mm; 55 means working distance in mm (INF means infinite via a lens); 66 means image size in mm or diffraction angle in degree or rad when working distance is infinite; 77 means wavelength.  For example, STO-TH-RD-8-3.5-INF-1.4DEG-532.

Our standard top-hat beam shaping elements include Gaussian beam to rectangular flat-top beam and Gaussian beam to circular flat-top beam.

(1) Gaussian beam to rectangular flat-top beam

Part No

DOE dimensions

Image size

Wavelength

Working distance

STO-TH-REC-8-2-INF-20mrad-1064

8 mm

20 mrad

1064 nm

Infinite

STO-TH-REC-8-2-200-4x4-1064

8 mm

4x4 mm

1064 nm

200 mm

STO-TH-REC-8-2.5-INF-20mrad-1064

8 mm

20 mrad

1064 nm

Infinite

STO-TH-REC-8-2.5-200-4x4-1064

8 mm

4x4 mm

1064 nm

200 mm

STO-TH-REC-8-3-INF-20mrad-1064

8 mm

20 mrad

1064 nm

Infinite

STO-TH-REC-8-3-200-4x4-1064

8 mm

4x4 mm

1064 nm

200 mm

STO-TH-REC-8-3.5-INF-20mrad-1064

8 mm

20 mrad

1064 nm

Infinite

STO-TH-REC-8-3.5-200-4x4-1064

8 mm

4x4 mm

1064 nm

200 mm

STO-TH-REC-10-4-INF-20mrad-1064

8 mm

20 mrad

1064 nm

Infinite

STO-TH-REC-10-4-200-4x4-1064

8 mm

4x4 mm

1064 nm

200 mm

STO-TH-REC-20-8-INF-2.9 mrad-1064

20 mm

2.9 mrad

1064 nm

Infinite

STO-TH-REC-20-8-1700-5x5-1064

20 mm

5x5 mm

1064 nm

1700 mm

STO-TH-REC-8-3.5-100-0.5x0.5-532

8  mm

0.5x0.5 mm

532 nm

100 mm

STO-TH-REC-8-3-200-4x4-532

8  mm

4x4 mm

532 nm

200 mm

STO-TH-REC-8-3.5-200-0.5x0.5-532

8  mm

0.5x0.5 mm

532 nm

200 mm

STO-TH-REC-8-3.5-200-1x1-532

8  mm

1x1 mm

532 nm

200 mm

STO-TH-REC-8-3.5-INF-5mrad-532

8  mm

5 mrad

532 nm

Infinite

STO-TH-REC-8-3.5-100-4.0x4.0-532

8  mm

4.0x4.0 mm

532 nm

100 mm

STO-TH-REC-8-3.5-200-4.0x4.0-532

8  mm

4.0x4.0 mm

532 nm

200 mm

STO-TH-REC-8-3.5-INF-40mrad-532

8  mm

40 mrad

532 nm

Infinite

STO-TH-REC-10-4.0--100-0.5x0.5-532

10  mm

0.5x0.5 mm

532 nm

100 mm

STO-TH-REC-10-4.0-INF-5mrad-532

10  mm

5 mrad

532 nm

Infinite

STO-TH-REC-10-4.0-100-6.0x6.0-532

10  mm

6.0x6.0 mm

532 nm

100 mm

STO-TH-REC-10-4.0--INF-59.9mrad-532

10  mm

59.9 mrad

532 nm

Infinite

STO-TH-REC-12-5.0-100-0.2x0.2-532

12  mm

0.2x0.2 mm

532 nm

100 mm

STO-TH-REC-12-5.0--INF-20mrad-532

12  mm

2 mrad

532 nm

Infinite

STO-TH-REC-12-5.0-100-0.5x0.5-532

12  mm

0.5x0.5 mm

532 nm

100 mm

STO-TH-REC-12-5.0-INF-5mrad-532

12 mm

5 mrad

532 nm

Infinite

STO-TH-REC-12-5.0-200-8.0x8.0-532

12  mm

8.0x8.0 mm

532 nm

200 mm

STO-TH-REC-12-5.0-INF-40mrad-532

12  mm

40.0 mrad

532 nm

Infinite

STO-TH-REC-20-8.0-200-12x12-532

20  mm

12x12 mm

532 nm

200 mm

STO-TH-REC-20-8.0-INF-99.7mrad-532

20  mm

99.7 mrad

532 nm

Infinite

(2) Gaussian beam to circular flat-top beam:

Part No

DOE dimensions

Image size

Wavelength

Working distance

STO-TH-RD-8-3.5-100-0.05-532

8 mm

0.05 mm

532 nm

100 mm

STO-TH-RD-8-3.5-INF-0.5mrad-532

8 mm

0.5 mrad

532 nm

infinite

STO-TH-RD-8-3.5-100-0.1-532

8 mm

0.1 mm

532 nm

100 mm

STO-TH-RD-8-3.5--INF-1mrad-532

8 mm

1 mrad

532 nm

infinite

STO-TH-RD-8-3.5-100-0.2-532

8 mm

0.2 mm

532 nm

100 mm

STO-TH-RD-8-3.5-INF-2mrad-532

8 mm

2 mrad

532 nm

infinite

STO-TH-RD-8-3.5-100-0.5-532

8 mm

0.5 mm

532 nm

100 mm

STO-TH-RD-8-3.5-INF-5mrad-532

8 mm

5 mrad

532 nm

infinite

STO-TH-RD-10-4.0-100-0.05-532

10 mm

0.05 mm

532 nm

100 mm

STO-TH-RD-10-4.0-INF-0.5mrad-532

10 mm

0.5 mrad

532 nm

infinite

STO-TH-RD-10-4.0-100-0.1-532

10 mm

0.1 mm

532 nm

100 mm

STO-TH-RD-10-4.0-INF-1mrad-532

10 mm

1 mrad

532 nm

infinite

STO-TH-RD-10-4.0-100-0.2-532

10 mm

0.2 mm

532 nm

100 mm

STO-TH-RD-10-4.0-INF-2mrad-532

10 mm

2 mrad

532 nm

infinite

STO-TH-RD-10-4.0-100-0.5-532

10 mm

0.5 mm

532 nm

100 mm

STO-TH-RD-10-4.0-INF-5mrad-532

10 mm

5 mrad

532 nm

infinite

STO-TH-RD-12-5.0-100-0.05-532

12 mm

0.05 mm

532 nm

100 mm

STO-TH-RD-12-5.0-INF-0.5mrad-532

12 mm

0.5 mrad

532 nm

infinite

STO-TH-RD-12-5.0-100-0.1-532

12 mm

0.1 mm

532 nm

100 mm

STO-TH-RD-12-5.0-INF-1mrad-532

12 mm

1 mrad

532 nm

infinite

STO-TH-RD-12-5.0-100-0.2-532

12 mm

0.2 mm

532 nm

100 mm

STO-TH-RD-12-5.0-INF-2mrad-532

12 mm

2 mrad

532 nm

infinite

STO-TH-RD-12-5.0-100-0.5-532

12 mm

0.5 mm

532 nm

100 mm

STO-TH-RD-12-5.0-INF-5mrad-532

12 mm

5 mrad

532 nm

infinite

2.2 Beam homogenizing tolerant to incident beam size and beam quality

Part Number

DOE receiving size

Wavelength

Diffraction angle

Description

STO-SFH-RD-12p5-25DEG-785

12.5x12.5mm

785nm

25degree

 

STO-SFH-RD-12.5-25DEG-785-S

12.5x12.5mm

785nm

25degree

Collimation of incident laser beam is not required

STO-SFH-REC-10-83p25x83p25mrad-532

10x10mm

532nm

83.25x83.25
mrad

Equivalent to 0.333x0.333mm @4mm working distance

STO-SFH-REC-50-4p3x11mrad-1064

Φ50mm

1064nm

4.3x11mrad

Equivalent to 1.3x3.3mm @ 300mm working distance

STO-SFH-REC-50-2x5p3mrad-1064

Φ50mm

1064nm

2x5.3mrad

Equivalent to 0.6x1.6mm @ 300 mm working distance

STO-SFH-REC-50-20x20mrad-1064

Φ50mm

1064nm

20x20mrad

Equivalent to 6x6mm @ 300 mm working distance

STO-SFH-REC-25-10mrad-1064

Φ25mm

1064nm

10mrad

Equivalent to 3x3mm @ 300 mm working distance

STO-SFH-RD-50-20mrad-1064

Φ50mm

1064nm

20mrad

Equivalent to 6 mm in diameter round output spot @ 300 mm working distance

STO-SFH-REC-30-p5xp5mrad-1064

30 x 30mm

1064nm

0.5x0.5mrad

Equivalent to a 30x30micron output spot @60mm working distance

STO-SFH-REC-12-p15xp45mrad-355

12 x 12mm

355nm

0.15x0.4mrad

Equivalent to a 20x60micron output spot @134mm working distance

STO-SFH-REC-25-p15xp45mrad-355

25 x 25mm

355nm

0.15x0.45

mrad

Equivalent to a 20x60 micron output spot @134mm working distance

STO-SFH-REC-18-4mrad-355

18 x 18mm

355nm

4x4 mrad

 

STO-SFH-REC-18-5p2mrad-355

18 x 18mm

355nm

5.2x5.2mrad

 

STO-SFH-REC-12-p45x1p35mrad-1064

12 x 12mm

1064nm


0.45x1.35mrad

 

2.3 Beam homogenizing with speckles, tolerant to incident beam size and beam quality

The products were designed and fabricated based on our third method of homogenizing an incident laser beam. One main advantage of this type of product is its insensitivity to the incident beam quality and the change of intensity. Hence it is most suitable for the less stable lasers, laser with long pulse duration or multi-pulse laser applications. Due to the lengthy exposure time, the intensity fluctuation can be averaged to some extent. For a circularly symmetric output beam, the variation in intensity can be further impressed by rotating the beam homogenizer.

doe

Item No

DOE receiving size

Wavelength

Diffraction angle

STO-DF-RD-6-2-473

6 x 6 mm

473 nm

2 deg

STO-DF-RD-6-3-589

6 x 6 mm

589 nm

3 deg

STO-DF-RD-6-4-785

6 x 6 mm

785 nm

4 deg

STO-DF-RD-6-4-808

6 x 6 mm

808 nm

4 deg

2.4 Beam homogenizing for incoherent beams with microlenses

We have developed a variety of microlens arrays. The diameter or side length of each individual microlens can be as small as 2 micron. Since 2014, we have managed to increase the upper limit of the diameter or side length of each individual microlens from around 400 micron to 2,000 micron, and managed to increase the lens sag height from around 15 micron to 70 micron. Correspondingly the focal length of the microlens array can be from a few micron to 20,000 micron at visible wavelengths. The shape of the microlens array can be circular, square or hexagon. Specifications outside the ranges stated here are also possible upon customers‘ request.

doe doe

AFM picture of 14 micron microlens array. The non-symmetry is caused by the measurement error of AFM, which is ideal to measure the height differences but may have error during the measurement of continuous profiles.

Part Number

Shape

Pitch (um)

Number of microlens

Dimension

ROC(um)

focal length (um)

ROC error

STO-MLA-R14

Round

Φ14

 

 

7~15

12~36

<+/-5%

STO-MLA-S14

Square

14x14

 

 

7~15

12~36

<+/-5%

STO-MLA-S25

Square

25x25

248x184

6.2x4.6

~17

~37

<+/-5%

STO-MLA-S80

Square

80x80

625x625

50x50

~58

~120

<+/-5%

STO-MLA-S96

Square

96x96

105x210

10x20

1440

~ 3000

<+/-5%

STO-MLA-S120

Square

120x120

83x126

10x20

2250

~ 5000

<+/-5%

STO-MLA-R150

Round

Φ150

32x32

4.8x4.8

200~690

450~1500

<+/-5%

STO-MLA-S150

Square

150x150

32x32

4.8x4.8

200~690

450~1500

<+/-5%

STO-MLA-S150-170

Square

150x150

148x148

22.2x22.2

138~170

138~170

<+/-5%

STO-MLA-R250

Round

Φ250

24x24

6x6

547

~1000

<+/-5%

STO-MLA-S250

Square

250x250

24x24

6x6

547

~1000

<+/-5%

STO-MLA-H50-43.3

Hexagon

50x43.3

 

 

28.33
(height15 micron)

~62

<+/-5%

STO-MLA-R825-f13000

Round

825

17 x17

14 x14

 

13000

<+/-5%

M-Shaper

M-Shaper, is a diffractive optical elements (DOE) used to create a unique 2D M-shaped intensity profile, with sharp edges in a specific work plane. The M-Shaper optical function is not possible by conventional reflective or refractive optical elements. The typical application is to create a uniform exposure over scanned lines. That is, when scanning a line with a regular Gaussian or even Top-Hat spot the center gets over exposed (influencing the heat distribution during laser material processing). The M-Shape is the mathematical shape that gives a uniform exposure over the line when scanned. This provides higher quality of the process & enables more flexibility in the system configuration. For example, it allows optimization of the intensity profile, and image size, without changing the laser, fiber cable and/or scanning optical head.

The benefits of our optimized M-shaped intensity profile include:

The most M-Shape DOE’s listed below require a Single Mode (TEM00) input beam. However, some M-Shape DOE’s had been designed for Multimode lasers (with MM in remarks column). Please feel free to contact us on this or any other custom request you may have.

PN

λ[nm]

Beam Diameter (mm)

Image Shape

θf [deg]

Image size*** [mm] for EFL=100mm

MR-003-I-Y-A

1064

5.3

Round

0.43

43

MR-004-I-Y-A

1064

5.7

Round

0.4

40

MR-006-I-Y-A

1064

10.2

Round

0.23

23

MR-009-I-Y-A

1064

11.3

Round

0.21

21

MR-010-I-Y-A

1064

2.3

Round

1.02

102

MR-013-I-Y-A

1064

4.2

Round

13.32

1332

MR-015-I-Y-A

1064

4.2

Round

6.06

606

MR-002-I-Y-A

1064

4.5

Round

0.52

52

MR-005-I-Y-A

1064

7.9

Round

0.29

29

MR-007-I-Y-A

1064

6.8

Round

0.34

34

MR-008-I-Y-A

1064

9

Round

0.26

26

MR-011-I-Y-A

1064

3.4

Round

0.69

69

MR-001-I-Y-A

1064

8.5

Round

4.26

426

MR-012-I-Y-A

1064

8.4

Round

1.03

103

MR-014-I-Y-A

1064

4.2

Round

10.13

1013

MR-017-I-Y-A

1064

8.4

Round

0.47

47

MR-018-I-Y-A

1064

6

Round

3.21

321

RD-232-I-Y-A

1064

>1.5

Round

34.9

3490.4

RD-247-I-Y-A

1064

>6

Round

8.73

873

RD-254-I-Y-A

1064

>4

Round

17.45

1745

MR-016-I-Y-A

1064

7

Round

3.32

332

Beam Sampler

Diffractive beam samplers are used to monitor high power lasers where optical losses and wavefront distortions of the transmitted beam need to be kept to a minimum. In most applications, most of the incident light must to continue forward, "unaffected," in the "zero order" while a small amount of the beam is diffracted into a higher order, providing a "sample" of the beam. By directing the sampled light in the higher order(s) onto a detector, it is possible to monitor, in real time, not only the power levels of a laser beam, but also its profile. A Laser Beam Sampler allows the high power beam (zero order) to propagate undisturbed along the optical axis, but produces two side beams with low energy. These two sample beams are located to the left and right of the main beam (-1 and +1 orders), and are characterized by a given separation angle between them and by a sample power ratio. It is relatively easy to modify the sampling ratio upon a request of the customer.

PN

λ[nm]

Sampled Energy [%]

Sampled Angle [deg]

Element Size [mm]

SA-010-I-Y-A

1064

0.4

15.43

12x12

SA-014-I-Y-A

1064

0.4

15.43

25.4

SA-022-I-Y-A

1064

1.22

2.07

25.4

SA-220-I-Y-A

1064

0.5

10.21

11

SA-020-I-Y-A

1064

1

1.27

27.94

SA-021-I-Y-A

1064

1

1

25.4

SA-219-I-Y-A

1064

0.5

2.44

25.4

SA-204-I-Y-A

1064

0.5

2.07

25.4

SA-206-I-Y-A

1064

1

2.07

25.4

SA-207-I-Y-A

1064

2

10

15

SA-218-I-Y-A

1064

0.5

1

25.4

SA-217-I-Y-A

1064

0.5

2.84

25.4

SA-216-I-Y-A

1064

0.5

3.81

25.4

SA-213-I-Y-A

1064

0.5

9.21

15

SA-215-I-Y-A

1064

0.5

5.09

25.4

SA-208-I-Y-A

1064

2

5.09

15

SA-211-I-Y-A

1064

1

20.77

10x10

SA-209-I-Y-A

1064

3.8

15.43

10.7x10.7

SA-011-I-Y-A

1064

1.6

15.43

12x12

SA-012-I-Y-A

1064

3.8

15.43

12x12

SA-214-I-Y-A

1064

0.5

7.64

9.8x9.8

Ring Generator

A Ring generator transforms a laser beam into a ring (Diffractive axicon) or into a multi-rings (Multi-Circles). 

A laser concentric circles pattern transforms a laser beam into multiple circles.

A concentric circles light pattern can be used for certain 3D mapping applications, especially within pipe/tube objects.

A concentric circles pattern was recently proved to be the most appropriate light pattern for certain 3D mapping applications, especially with pipe/tube objects.

Each laser concentric circles is defined by its full angle and its number of rings.

We offer, in addition to its standard products, the possibility to design and manufacture a number of circles, separation angle between the circles and full angle as requested by the customer, as a part of its custom design and manufacturing capability.

We also design and manufacture diffractive axicon which is a DOE that splits an input beam to a single ring.

An Axicon transforms a laser beam into a ring shape (a Bessel intensity profile).

The ring's thickness will be equivalent to the diffraction-limited-spot size (of the input laser beam).

An Axicon also images a point source into a line along the optical axis and increases the Depth Of Focus (DOF). Each diffractive Axicon product is defined by its ring propagation angle.

Axicon for single ring shape

PN

λ[nm]

Element Size [mm]

Ring Angle [deg] P2P(+)

Ring Dia(+) [mm] for EFL=100mm

Remarks

DA-004-I-Y-A

1064

25.4

8.14

14.231

 

DA-011-I-Y-A

1064

25.4

0.061

0.106

 

DA-003-I-Y-A

1064

25.4

0.3

0.524

 

DA-017-I-Y-A**

1064

34

1.52

2.653

 

DA-006-I-Y-A

1064

11

0.24

0.419

 

DA-032-I-Y-A

1064

25.4

3.6

6.285

 

DA-008-I-Y-A

1064

11

0.49

0.855

 

DA-009-I-Y-A

1064

11

0.98

1.71

 

DA-010-I-Y-A

1064

25.4

0.081

0.141

 

DA-033-I-Y-A

1064

25.4

7.2

12.583

 

DA-012-I-Y-A

1064

11

2

3.491

 

DA-031-I-Y-A

1064

25.4

1.8

3.142

 

DA-014-I-Y-A**

1064

34

0.19

0.332

 

DA-015-I-Y-A**

1064

34

0.38

0.663

 

DA-016-I-Y-A**

1064

34

0.76

1.326

 

DA-005-I-Y-A

1064

11

0.12

0.209

 

DA-018-I-Y-A

1064

11

1.72

3.002

 

DA-019-I-Y-A

1064

11

2.29

3.997

 

DA-020-I-Y-A

1064

11

0.057

0.099

 

DA-021-I-Y-A

1064

11

0.086

0.15

 

DA-029-I-Y-A

1064

11

1.39

2.426

 

DA-028-I-Y-A

1064

11

0.7

1.222

 

DA-027-I-Y-A

1064

11

0.35

0.611

 

DA-026-I-Y-A

1064

11

0.17

0.297

 

DA-025-I-Y-A

1064

11

0.35

0.611

High Efficiency

DA-024-I-Y-A

1064

11

0.17

0.297

High Efficiency

DA-023-I-Y-A

1064

11

0.24

0.419

High Efficiency

DA-013-I-Y-A

1064

34

0.19

0.332

High Efficiency

DA-007-I-Y-A

1064

11

0.12

0.209

High Efficiency

DA-002-I-Y-A

1064

7.25x7.25

30.85

55.183

 

Concentric Circles Pattern

Part Number

λ (nm)

number of rings

Full Angle (Deg)

Dimensions(mm)

Material

Coating

MC-006-I-Y-A

1064

2

1.83

11

Fused Silica

AR V-Coating

MC-005-I-Y-A

1064

2

3.66

11

Fused Silica

AR V-Coating

MC-017-1-Y-A

808

12

5.9

11

Fused Silica

AR V-Coating

Beam Shaper,  Beam Splitter,  Voxtex Lens,  Multi-focal LensLens for Glass Cutting,  Homoginizer/diffuser,  Dual Wavelength Beam Combiner & Lens,  Application Notes

Share: